Home  >>  Archives  >>  Volume 6 Number 1  >>  st0096

The Stata Journal
Volume 6 Number 1: pp. 40-57



Subscribe to the Stata Journal
cover

Generalized least squares for trend estimation of summarized dose–response data

Nicola Orsini
Karolinska Institutet
Stockholm, Sweden
[email protected]
Rino Bellocco
Karolinska Institutet
Stockholm, Sweden
Sander Greenland
UCLA School of Public Health
Los Angeles, CA
Abstract.   This paper presents a command, glst, for trend estimation across different exposure levels for either single or multiple summarized case–control, incidence-rate, and cumulative incidence data. This approach is based on constructing an approximate covariance estimate for the log relative risks and estimating a corrected linear trend using generalized least squares. For trend analysis of multiple studies, glst can estimate fixed- and random-effects metaregression models.
Terms of use     View this article (PDF)

View all articles by these authors: Nicola Orsini, Rino Bellocco, Sander Greenland

View all articles with these keywords: glst, dose–response data, generalized least squares, trend, meta-analysis, metaregression

Download citation: BibTeX  RIS

Download citation and abstract: BibTeX  RIS